Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 519
Filtrar
1.
Org Lett ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656195

RESUMO

Switchable enantioselectivity was uncovered in the enantioselective catalytic conjugate addition of ß,γ-unsaturated α-keto esters with terminal alkynes to the chiral Lewis acid complex of In(BF4)3 and chiral phosphoric acid.

2.
J Inflamm (Lond) ; 21(1): 12, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644501

RESUMO

BACKGROUND: Interplay between systemic inflammation and programmed cell death contributes to the pathogenesis of acute lung injury (ALI). cAMP-regulated transcriptional coactivator 1 (CRTC1) has been involved in the normal function of the pulmonary system, but its role in ALI remains unclear. METHODS AND RESULTS: We generated a Crtc1 knockout (KO; Crtc1-/-) mouse line. Sepsis-induced ALI was established by cecal ligation and puncture (CLP) for 24 h. The data showed that Ctrc1 KO substantially ameliorated CLP-induced ALI phenotypes, including improved lung structure destruction, reduced pulmonary vascular permeability, diminished levels of proinflammatory cytokines and chemokines, compared with the wildtype mice. Consistently, in lipopolysaccharide (LPS)-treated RAW264.7 cells, Crtc1 knockdown significantly inhibited the expression of inflammatory effectors, including TNF-α, IL-1ß, IL-6 and CXCL1, whereas their expressions were significantly enhanced by Crtc1 overexpression. Moreover, both Crtc1 KO in mice and its knockdown in RAW264.7 cells dramatically reduced TUNEL-positive cells and the expression of pro-apoptotic proteins. In contrast, Crtc1 overexpression led to an increase in the pro-apoptotic proteins and LPS-induced TUNEL-positive cells. Mechanically, we found that the phosphorylation of Akt was significantly enhanced by Crtc1 knockout or knockdown, but suppressed by Crtc1 overexpression. Administration of Triciribine, an Akt inhibitor, substantially blocked the protection of Crtc1 knockdown on LPS-induced inflammation and cell death in RAW264.7 cells. CONCLUSIONS: Our study demonstrates that CRTC1 contribute to the pathological processes of inflammation and apoptosis in sepsis-induced ALI, and provides mechanistic insights into the molecular function of CRTC1 in the lung. Targeting CRTC1 would be a promising strategy to treat sepsis-induced ALI in clinic.

3.
Talanta ; 274: 126010, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38569372

RESUMO

Intracellular glucose detection is crucial due to its pivotal role in metabolism and various physiological processes. Precise glucose monitoring holds significance in diabetes management, metabolic studies, and biotechnological applications. In this study, we developed an innovative and expedient cell-permeable nanoreactor for intracellular glucose based on surface-enhanced Raman scattering (SERS). The nanoreactor was designed with gold nanoparticles (AuNPs), which were engineered with glucose oxide (GOx) and a H2O2-responsive Raman reporter 2-mercaptohydroquinone (2-MHQ). The interaction between 2-MHQ and H2O2 generated by glucose and GOx could simultaneously induce the appearance in the peak at 985 cm-1. Our results showed excellent performance in detecting glucose within the concentration range from 0.1 µM to 10 mM, with a low detection limitation of 14.72 nM. In addition, the glucose distribution in single HeLa cells was evaluated by real time SERS mapping. By combining noble metal particles and natural oxidases, the nanoreactor possesses both Raman activity and enzymatic functionality, thus enables sensitive glucose detection and facilitates imaging at a single cell level, which offers an insightful monitoring of cellular processes.

4.
Org Lett ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657139

RESUMO

Rapid and efficient construction of multifunctionalized skeletons through a one-pot multicompound domino reaction has been recognized as a simple and practical strategy. Herein, a visible-light-enabled three-component reaction of isothiocyanates, isocyanides, and thianthrenium salt-functionalized arenes is presented, which affords a facile approach to sulfur-containing trisubstituted imidazoles in good yields with a broad substrate scope and excellent functional group tolerance. The byproduct thianthrene is recovered in quantity, thereby ultimately reducing the production of chemical waste. The developed methodology has potential value for the discovery and development of thioimidazole-based drugs.

5.
Adv Sci (Weinh) ; : e2402196, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650164

RESUMO

Fiber-based artificial muscles are promising for smart textiles capable of sensing, interacting, and adapting to environmental stimuli. However, the application of current artificial muscle-based textiles in wearable and engineering fields has largely remained a constraint due to the limited deformation, restrictive stimulation, and uncomfortable. Here, dual-responsive yarn muscles with high contractile actuation force are fabricated by incorporating a very small fraction (<1 wt.%) of Ti3C2Tx MXene/cellulose nanofibers (CNF) composites into self-plied and twisted wool yarns. They can lift and lower a load exceeding 3400 times their own weight when stimulated by moisture and photothermal. Furthermore, the yarn muscles are coiled homochirally or heterochirally to produce spring-like muscles, which generated over 550% elongation or 83% contraction under the photothermal stimulation. The actuation mechanism, involving photothermal/moisture-mechanical energy conversion, is clarified by a combination of experiments and finite element simulations. Specifically, MXene/CNF composites serve as both photothermal and hygroscopic agents to accelerate water evaporation under near-infrared (NIR) light and moisture absorption from ambient air. Due to their low-cost facile fabrication, large scalable dimensions, and robust strength coupled with dual responsiveness, these soft actuators are attractive for intelligent textiles and devices such as self-adaptive textiles, soft robotics, and wearable information encryption.

6.
Heliyon ; 10(7): e29262, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617960

RESUMO

Allergic rhinitis, one of the common diseases in otolaryngology, has shown an increasing incidence under the influence of various geographical, cultural and economic factors, making it a common and serious global public health problem. Modern medicine uses medication as the primary therapy for allergic rhinitis, but poor symptom control and easy relapse are the disadvantages of this treatment. However, Traditional Chinese medicine, with its long history, has treated allergic rhinitis by symptomatic treatment according to pattern differentiation with its unique insights and methods, which are effective and safe in numerous clinical studies. Therefore, this paper describes TCM decoction, acupuncture, moxibustion, acupoint application, catgut-embedding therapy and ear acupuncture in the treatment of AR. This study aims to provide more personalized and precise treatment for allergic rhinitis patients by investigating the mechanism of action, clinical research and development of traditional Chinese medicine treatments.

7.
J Am Chem Soc ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654452

RESUMO

Enfumafungin-type antibiotics, represented by enfumafungin and fuscoatroside, belong to a distinct group of triterpenoids derived from fungi. These compounds exhibit significant antifungal properties with ibrexafungerp, a semisynthetic derivative of enfumafungin, recently gaining FDA's approval as the first oral antifungal drug for treating invasive vulvar candidiasis. Enfumafungin-type antibiotics possess a cleaved E-ring with an oxidized carboxyl group and a reduced methyl group at the break site, suggesting unprecedented C-C bond cleavage chemistry involved in their biosynthesis. Here, we show that a 4-gene (fsoA, fsoD, fsoE, fsoF) biosynthetic gene cluster is sufficient to yield fuscoatroside by heterologous expression in Aspergillus oryzae. Notably, FsoA is an unheard-of terpene cyclase-glycosyltransferase fusion enzyme, affording a triterpene glycoside product that relies on enzymatic fusion. FsoE is a P450 enzyme that catalyzes successive oxidation reactions at C19 to facilitate a C-C bond cleavage, producing an oxidized carboxyl group and a reduced methyl group that have never been observed in known P450 enzymes. Our study thus sets the important foundation for the manufacture of enfumafungin-type antibiotics using biosynthetic approaches.

8.
J Nat Prod ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447084

RESUMO

Oxabornyl polyenes represent a unique group of polyketides characterized by a central polyene core flanked by a conserved oxabornyl moiety and a structurally diverse oxygen heterocyclic ring. They are widely distributed in fungi and possess a variety of biological activities. Due to the significant spatial separation between the two stereogenic ring systems, it is difficult to establish their overall relative configurations. Here, we isolated three oxabornyl polyenes, prugosenes A1-A3 (1-3), from Talaromyces sp. JNU18266-01. Although these compounds were first reported from Penicillium rugulosum, their overall relative and absolute configurations remained unassigned. By employing ozonolysis in combination with ECD calculations, we were able to establish their absolute configurations, and additionally obtained seven new chemical derivatives (4-10). Notably, through NMR data analysis and quantum chemical calculations, we achieved the structural revision of prugosene A2. Furthermore, prugosenes A1-A3 exhibited potent antiviral activity against the respiratory syncytial virus, with compound 1 displaying an IC50 value of 6.3 µM. Our study thus provides a valuable reference for absolute configuration assignment of oxabornyl polyene compounds.

9.
Anal Chem ; 96(14): 5702-5710, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38538555

RESUMO

Glass nanopipets have been demonstrated to be a powerful tool for the sensing and discrimination of biomolecules, such as DNA strands with different lengths or configurations. Despite progress made in nanopipet-based sensors, it remains challenging to develop effective strategies that separate and sense in one operation. In this study, we demonstrate an agarose gel-filled nanopipet that enables hyphenated length-dependent separation and electrochemical sensing of short DNA fragments based on the electrokinetic flow of DNA molecules in the nanoconfined channel at the tip of the nanopipet. This nanoconfined electrokinetic chromatography (NEC) method is used to distinguish the mixture of DNA strands without labels, and the ionic current signals measured in real time show that the mixed DNA strands pass through the tip hole in order according to the molecular weight. With NEC, gradient separation and electrochemical measurement of biomolecules can be achieved simultaneously at the single-molecule level, which is further applied for programmable gene delivery into single living cells. Overall, NEC provides a multipurpose platform integrating separation, sensing, single-cell delivery, and manipulation, which may bring new insights into advanced bioapplication.


Assuntos
DNA , Nanotecnologia , DNA/química , Nanotecnologia/métodos , Cromatografia
10.
Chem Sci ; 15(10): 3711-3720, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455029

RESUMO

We herein present a strain-release glycosylation method employing a rationally designed ortho-2,2-dimethoxycarbonylcyclopropylbenzyl (CCPB) thioglycoside donor. The donor is activated through the nucleophilic ring-opening of a remotely activable donor-acceptor cyclopropane (DAC) catalyzed by mild Sc(OTf)3. Our new glycosylation method efficiently synthesizes O-, N-, and S-glycosides, providing facile chemical access to the challenging S-glycosides. Because the activation conditions of conventional glycosyl donors and our CCPB thioglycoside are orthogonal, our novel donor is amenable to controlled one-pot glycosylation reactions with conventional donors for expeditious access to complex glycans. The strain-release glycosylation is applied to the assembly of a tetrasaccharide of O-polysaccharide of Escherichia coli O-33 in one pot and the synthesis of a 1,1'-S-linked glycoside oral galectin-3 (Gal-3) inhibitor, TD139, to demonstrate the versatility and effectiveness of the novel method for constructing both O- and S-glycosides.

11.
Front Oncol ; 14: 1327046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496759

RESUMO

Background: Prostate cancer invades the capsule is a key factor in selecting appropriate treatment methods. Accurate preoperative prediction of extraprostatic extension (EPE) can help achieve precise selection of treatment plans. Purpose: The aim of this study is to verify the diagnostic efficacy of tumor size, length of capsular contact (LCC), apparent diffusion coefficient (ADC), and Amide proton transfer (APT) value in predicting EPE. Additionally, the study aims to investigate the potential additional value of APT for predicting EPE. Method: This study include 47 tumor organ confined patients (age, 64.16 ± 9.18) and 50 EPE patients (age, 61.51 ± 8.82). The difference of tumor size, LCC, ADC and APT value between groups were compared. Binary logistic regression was used to screen the EPE predictors. The receiver operator characteristic curve analysis was performed to assess the diagnostic performance of variables for predicting EPE. The diagnostic efficacy of combined models (model I: ADC+LCC+tumor size; model II: APT+LCC+tumor size; and model III: APT +ADC+LCC+tumor size) were also analyzed. Results: APT, ADC, tumor size and the LCC were independent predictors of EPE. The area under the curve (AUC) of APT, ADC, tumor size and the LCC were 0.752, 0.665, 0.700 and 0.756, respectively. The AUC of model I, model II, and model III were 0.803, 0.845 and 0.869, respectively. The cutoff value of APT, ADC, tumor size and the LCC were 3.65%, 0.97×10-3mm2/s, 17.30mm and 10.78mm, respectively. The sensitivity/specificity of APT, ADC, tumor size and the LCC were 76%/89.4.0%, 80%/59.6%, 54%/78.9%, 72%/66%, respectively. The sensitivity/specificity of model I, Model II and Model III were 74%/72.3%, 82%/72.5% and 84%/80.9%, respectively. Data conclusion: Amide proton transfer imaging has added value for predicting EPE. The combination model of APT balanced the sensitivity and specificity.

12.
J Org Chem ; 89(7): 5038-5048, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38517950

RESUMO

A novel method is described for the synthesis of 2,4-disubstituted oxazole and thiazole derivates via the coupling of α-diazoketones with (thio)amides or thioureas using trifluoromethanesulfonic acid (TfOH) as a catalyst. This protocol is characterized by mild reaction conditions, metal-free, and simplicity and also features good functional group tolerance, good to excellent yields, and a broad substrate scope with more than 40 examples. Experimental studies suggest a mechanism involving 2-oxo-2-phenylethyl trifluoromethanesulfonate as the key intermediate.

13.
Org Lett ; 26(9): 1845-1850, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38408361

RESUMO

The difunctionalization of alkenes using aryl thianthrenium salts as the aryl sources has been reported sporadically. However, the four-component difunctionalization of alkenes on the basis of aryl thianthrenium salts has not been reported thus far and still remains a challenge. Herein, a visible light/copper catalysis-enabled four-component reaction of aryl thianthrenium salts, DABCO·(SO2)2, alkenes, and TMSN3 is presented, which affords a facile approach to ß-azidosulfones in good yields with broad substrate scope and excellent functional group tolerance. This strategy indirectly realizes the method for the synthesis of ß-azidosulfones through site-selective aryl C-H bond functionalization and alkene difunctionalization. This developed method is an important complement to thianthrenium salts chemistry.

14.
Nat Prod Res ; : 1-6, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329014

RESUMO

Three new griseofulvin derivatives, griseofulvinoside A-C (1-3), were isolated from the ethyl acetate extract of the solid fermentation product of Aureobasidium pullulans. Their structures were elucidated based on extensive spectroscopic data analysis of MS, 1D and 2D NMR. The antifungal activities of new compounds were evaluated against four phytopathogenic fungi in vitro, and all test compounds demonstrated inhibitory effects. Among them, compound 2 exhibited the most potent activities against the four selected phytopathogenic fungi with inhibitory rates ranging from 40.2 to 75.8% at 0.2 mg/mL.

15.
Neurosurgery ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38391200

RESUMO

BACKGROUND AND OBJECTIVES: Grading systems, including the novel brain arteriovenous malformation endovascular grading scale (NBAVMES) and arteriovenous malformation embocure score (AVMES), predict embolization outcomes based on arteriovenous malformation (AVM) morphological features. The influence of hemodynamics on embolization outcomes remains unexplored. In this study, we investigated the relationship between hemodynamics and embolization outcomes. METHODS: We conducted a retrospective study of 99 consecutive patients who underwent transarterial embolization at our institution between 2012 and 2018. Hemodynamic features of AVMs were derived from pre-embolization digital subtraction angiography sequences using quantitative digital subtraction angiography. Multivariate logistic regression analysis was performed to determine the significant factors associated with embolization outcomes. RESULTS: Complete embolization (CE) was achieved in 17 (17.2%) patients, and near-complete embolization was achieved in 18 (18.2%) patients. A slower transnidal relative velocity (TRV, odds ratio [OR] = 0.71, P = .002) was significantly associated with CE. Moreover, higher stasis index of the drainage vein (OR = 16.53, P = .023), shorter transnidal time (OR = 0.15, P = .013), and slower TRV (OR = 0.9, P = .049) were significantly associated with complete or near-complete embolization (C/nCE). The area under the receiver operating characteristic curve for predicting CE was 0.87 for TRV, 0.72 for NBAVMES scores (ρ = 0.287, P = .004), and 0.76 for AVMES scores. The area under the receiver operating characteristic curve for predicting C/nCE was 0.77 for TRV, 0.61 for NBAVMES scores, and 0.75 for AVMES scores. Significant Spearman correlation was observed between TRV and NBAVMES scores and AVMES scores (ρ = 0.512, P < .001). CONCLUSION: Preoperative hemodynamic factors have the potential to predict the outcomes of AVM embolization. A higher stasis index of the drainage vein, slower TRV, and shorter transnidal time may indicate a moderate blood flow status or favorable AVM characteristics that can potentially facilitate embolization.

16.
Circ Res ; 134(2): 165-185, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38166463

RESUMO

BACKGROUND: Atherosclerosis is a globally prevalent chronic inflammatory disease with high morbidity and mortality. The development of atherosclerotic lesions is determined by macrophages. This study aimed to investigate the specific role of myeloid-derived CD147 (cluster of differentiation 147) in atherosclerosis and its translational significance. METHODS AND RESULTS: We generated mice with a myeloid-specific knockout of CD147 and mice with restricted CD147 overexpression, both in an apoE-deficient (ApoE-/-) background. Here, the myeloid-specific deletion of CD147 ameliorated atherosclerosis and inflammation. Consistent with our in vivo data, macrophages isolated from myeloid-specific CD147 knockout mice exhibited a phenotype shift from proinflammatory to anti-inflammatory macrophage polarization in response to lipopolysaccharide/IFN (interferon)-γ. These macrophages demonstrated a weakened proinflammatory macrophage phenotype, characterized by reduced production of NO and reactive nitrogen species derived from iNOS (inducible NO synthase). Mechanistically, the TRAF6 (tumor necrosis factor receptor-associated factor 6)-IKK (inhibitor of κB kinase)-IRF5 (IFN regulatory factor 5) signaling pathway was essential for the effect of CD147 on proinflammatory responses. Consistent with the reduced size of the necrotic core, myeloid-specific CD147 deficiency diminished the susceptibility of iNOS-mediated late apoptosis, accompanied by enhanced efferocytotic capacity mediated by increased secretion of GAS6 (growth arrest-specific 6) in proinflammatory macrophages. These findings were consistent in a mouse model with myeloid-restricted overexpression of CD147. Furthermore, we developed a new atherosclerosis model in ApoE-/- mice with humanized CD147 transgenic expression and demonstrated that the administration of an anti-human CD147 antibody effectively suppressed atherosclerosis by targeting inflammation and efferocytosis. CONCLUSIONS: Myeloid CD147 plays a crucial role in the growth of plaques by promoting inflammation in a TRAF6-IKK-IRF5-dependent manner and inhibiting efferocytosis by suppressing GAS6 during proinflammatory conditions. Consequently, the use of anti-human CD147 antibodies presents a complementary therapeutic approach to the existing lipid-lowering strategies for treating atherosclerotic diseases.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , 60574 , Fator 6 Associado a Receptor de TNF/metabolismo , Aterosclerose/metabolismo , Inflamação/genética , Camundongos Knockout , Fenótipo , Apolipoproteínas E , Fatores Reguladores de Interferon/genética , Camundongos Endogâmicos C57BL
17.
J Neurointerv Surg ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38238009

RESUMO

BACKGROUND: Detecting and segmenting intracranial aneurysms (IAs) from angiographic images is a laborious task. OBJECTIVE: To evaluates a novel deep-learning algorithm, named vessel attention (VA)-Unet, for the efficient detection and segmentation of IAs. METHODS: This retrospective study was conducted using head CT angiography (CTA) examinations depicting IAs from two hospitals in China between 2010 and 2021. Training included cases with subarachnoid hemorrhage (SAH) and arterial stenosis, common accompanying vascular abnormalities. Testing was performed in cohorts with reference-standard digital subtraction angiography (cohort 1), with SAH (cohort 2), acquired outside the time interval of training data (cohort 3), and an external dataset (cohort 4). The algorithm's performance was evaluated using sensitivity, recall, false positives per case (FPs/case), and Dice coefficient, with manual segmentation as the reference standard. RESULTS: The study included 3190 CTA scans with 4124 IAs. Sensitivity, recall, and FPs/case for detection of IAs were, respectively, 98.58%, 96.17%, and 2.08 in cohort 1; 95.00%, 88.8%, and 3.62 in cohort 2; 96.00%, 93.77%, and 2.60 in cohort 3; and, 96.17%, 94.05%, and 3.60 in external cohort 4. The segmentation accuracy, as measured by the Dice coefficient, was 0.78, 0.71, 0.71, and 0.66 for cohorts 1-4, respectively. VA-Unet detection recall and FPs/case and segmentation accuracy were affected by several clinical factors, including aneurysm size, bifurcation aneurysms, and the presence of arterial stenosis and SAH. CONCLUSIONS: VA-Unet accurately detected and segmented IAs in head CTA comparably to expert interpretation. The proposed algorithm has significant potential to assist radiologists in efficiently detecting and segmenting IAs from CTA images.

18.
Nat Prod Rep ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265076

RESUMO

Covering: up to August 2023Terpenoids, which are widely distributed in animals, plants, and microorganisms, are a large group of natural products with diverse structures and various biological activities. They have made great contributions to human health as therapeutic agents, such as the anti-cancer drug paclitaxel and anti-malarial agent artemisinin. Accordingly, the biosynthesis of this important class of natural products has been extensively studied, which generally involves two major steps: hydrocarbon skeleton construction by terpenoid cyclases and skeleton modification by tailoring enzymes. Additionally, fungi (Ascomycota and Basidiomycota) serve as an important source for the discovery of terpenoids. With the rapid development of sequencing technology and bioinformatics approaches, genome mining has emerged as one of the most effective strategies to discover novel terpenoids from fungi. To date, numerous terpenoid cyclases, including typical class I and class II terpenoid cyclases as well as emerging UbiA-type terpenoid cyclases, have been identified, together with a variety of tailoring enzymes, including cytochrome P450 enzymes, flavin-dependent monooxygenases, and acyltransferases. In this review, our aim is to comprehensively present all fungal terpenoid cyclases identified up to August 2023, with a focus on newly discovered terpenoid cyclases, especially the emerging UbiA-type terpenoid cyclases, and their related tailoring enzymes from 2015 to August 2023.

19.
Int Wound J ; 21(1): e14543, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38272821

RESUMO

After several institutions recommended salpingectomy as opposed to tubal ligation, we attempted to perform meta-analysis to compare operative properties and rates of postoperative wound infections. There are no temporal or linguistic limitations to our search in PubMed, Cochrane Library and Embase. The search was carried out in September 2023. The database search identified 401 potential studies and five studies were included in the meta-analysis. Our study involved a comparison of salpingectomy with tube ligating in female patients who wanted to be sterilized. Our trial included at least one result of the wound and haemorrhage. The articles that did not qualify for inclusion or did not submit data, and those who did not answer questions were excluded. Abstracts and full-text articles were assessed independently by two authors using blinding. Conflicting decisions were settled by consensus. The Cochrane-recommended ROBINS-I instrument has been applied to evaluate the risk of bias in clinical trials and to establish the quality of inclusion. Two authors separately evaluated the risk of bias for each trial; differences were settled by consensus. There were no statistically significant differences in the rate of postoperative wound infections among those who had received salpingectomy or tubal ligation (OR, 0.46; 95% CI, 0.18-1.20 p = 0.11). In the three trials, the risk of bleeding following the ligation of the fallopian tubes was lower than that of the salpingectomy group (OR, 1.25; 95% CI, 1.21-1.30 p < 0.0001). From this information we have come to the conclusion that it is possible to give preference to tubal ligation for reduction of bleeding in suitable circumstances, and that the findings currently do not provide sufficient evidence for a reduction in the risk of postoperative wound infection.


Assuntos
Esterilização Tubária , Humanos , Feminino , Infecção da Ferida Cirúrgica/prevenção & controle , Salpingectomia , Tubas Uterinas/cirurgia
20.
Plant Biotechnol J ; 22(3): 759-773, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37937736

RESUMO

Soybean is one of the most economically important crops worldwide and an important source of unsaturated fatty acids and protein for the human diet. Consumer demand for healthy fats and oils is increasing, and the global demand for vegetable oil is expected to double by 2050. Identification of key genes that regulate seed fatty acid content can facilitate molecular breeding of high-quality soybean varieties with enhanced fatty acid profiles. Here, we analysed the genetic architecture underlying variations in soybean seed fatty acid content using 547 accessions, including mainly landraces and cultivars from northeastern China. Through fatty acid profiling, genome re-sequencing, population genomics analyses, and GWAS, we identified a SEIPIN homologue at the FA9 locus as an important contributor to seed fatty acid content. Transgenic and multiomics analyses confirmed that FA9 was a key regulator of seed fatty acid content with pleiotropic effects on seed protein and seed size. We identified two major FA9 haplotypes in 1295 resequenced soybean accessions and assessed their phenotypic effects in a field planting of 424 accessions. Soybean accessions carrying FA9H2 had significantly higher total fatty acid contents and lower protein contents than those carrying FA9H1 . FA9H2 was absent in wild soybeans but present in 13% of landraces and 26% of cultivars, suggesting that it may have been selected during soybean post-domestication improvement. FA9 therefore represents a useful genetic resource for molecular breeding of high-quality soybean varieties with specific seed storage profiles.


Assuntos
Ácidos Graxos , Humanos , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Óleos de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...